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We report results about a rigorous microscopic justification of the Wulff 
construction for the two-dimensional Ising model at low temperatures and 
under periodic boundary conditions. The idea of the proof is sketched. 
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1. I N T R O D U C T I O N  

The theory of equilibrium crystal shapes and crystal growth dates back to 
Gibbs article, (1) "On the equilibrium of heterogeneous substances." In 
that paper Gibbs shows the role of surface tension, 3 depending on the 
orientation of the surface with respect to the axes of crystallization, for the 
determination of an equilibrium crystal shape. He also points out the 
complexities of the actual growth of a crystal and suggests that only very 
minute crystals have an ideal equilibrium form, while large crystals "will 
generally be bounded by those surfaces alone on which the deposit of new 
matter takes place least readily." 

These problems were further discussed by Curie. (~) A geometric way to 
find the optimal crystal shape, for a given orientation-dependent surface 
tension, was presented by Wulff t3) in 1901 (a Russian version of this paper 
appeared in 1895). Ironically, though the contribution of Wulff's paper is 

1 Institute for Information Problems, Russian Academy of Sciences, Ermolovoy 19, 103051 
Moscow, Russia. 

2 Department of Theoretical Physics and Center for Theoretical Study, Charles University, 
116 36 Prague 1, Czechoslovakia. 

3 One should rather call it interface free energy, as it is defined, in Gibbs words, "not by 
stretching the surface but by the work spent in forming the surface." 

1 

0022-4715/93/0700-0001507.00/0 �9 1993 Plenum Publishing Corporation 



2 Dobrushin et  al. 

the determination of equilibrium crystal shapes, his point of departure was 
a study of crystal growth (relating the rate of growth in various directions 
to the corresponding surface tension). The full proof of Wulff's optimaliza- 
tion result was presented by yon Laue, (4) Herring, (5) and others. 

It turns out, as predicted by Gibbs, that it is not easy to bring a crys- 
tal into equilibrium with the surrounding vapor or melt. The relaxation 
times are very long. Only very small crystals have been successfully equi- 
librated, r with an exceptional case being that of helium crystal, where 
the transport of matter is facilitated by surrounding superfluid helium and 
this circumstance allows one to study equilibrium crystals whose sizes are 
of the order of centimeters. (8-m For more detailed information about 
theoretical as well as experimental aspects of equilibrium crystal shapes see, 
e.g., the reviews in refs. 12-14. 

While the Wulff construction is a solution of a macroscopic 
optimalization problem based on an a priori knowledge of the orientation- 
dependent surface tension, it would be interesting to justify the equilibrium 
crystal shape yielded by the Wulff construction directly from a microscopic 
theory. It turns out that even in a simple case, when the crystal is modeled 
by a lattice gas ,  4 a mathematically rigorous justification of the Wulff 
construction involves a detailed discussion of technical results about the 
statistical behavior of deviations of the average magnetization, about the 
orientation-dependent surface tension and its finite-volume approxima- 
tions, and about the stability of the Wulff solution of the optimalization 
problem. Thus, our fully developed efforts to justify microscopically the 
Wulff construction resulted in a b o o k .  (16) Here we state our main result 
and present some ideas of the proof. In doing so, we restricted ourselves to 
the simplest case. Namely, we discuss the shape of a droplet for a 
two-dimensional Ising model in a canonical ensemble. 

2. SETTING AND RESULTS 

We consider an Ising ferromagnet on a torus T N ,  i.e., an N • N square 
under periodic boundary conditions, and with the Hamiltonian 

/-/(~189 Z (1) 
<s,t> t 

The first sum is over pairs of nearest neighbors, J is a positive coupling 
constant, and h ~ R is an external field. 

4 A two-dimensional lattice gas model was first used by Burton et al. C15) to study the growth 
of a layer at the crystal surface. 
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For h e 0  the Gibbs s t a t e  (')N, fl, h converges to a unique ther- 
modynamic limit ( .)a,h,  while for h = 0  the limit yields the combination 
�89  ) of states with nonvanishing magnetizations (~7'18~ 
_+m(fl)>0, once fl>flc~. 

Our aim is to discuss the asymptotic behavior of this model in the 
(small) canonical ensemble determined by fixing the number of sites with 
positive and negative spins. Namely, for any R of the same parity as N 2, 
- N  2 ~< R ~< N 2, we consider the probability 

~N,#,R(ff)={~ (N' fl' R)-~exp{-flHo(~r)} 

Here 

whenever R 2.. ~ = 
teTN 

otherwise 
(2) 

Z(N, fi, R)= ~ exp{-flHo(a)} (3) 
r E aQN, R 

TN is the considered torus, s the corresponding configuration space 
{ - 1 ,  +1} rN, and ON.R= {aOOU:52,~rNat=R}. 

Our aim is to study the asymptotics of a sequence of canonical 
ensembles characterized by the values R u such that RN/N 2 converges  to 
a constant p as N-* oo. In particular, we are interested in a description of 
typical configurations in these canonical ensembles. 

Locally, the asymptotics is described by the principle of equiv- 
alence.O9 24) Namely, if fl ~< tier, or fl > tier and p/> m(fl), then for any local 
observable (cylindrical function) f(av), Vc  7/2, IV[ < oo, one has 

lim ( f ) N , B ,  RN = ( f ) l J ,  h (4) 
N-+oo 

with h determined by the condition 

(o,)~,h-p (5) 

If fl > ficr and p ~ (-m(fl), m(fl)), the limit is a combination of pure phases 
with vanishing external field, 

lim ( f ) N ,  fl, R U = ( l - - g ) ( f ) ~ , +  + 2 ( f ) ~ .  (6) 
N ~ o o  

with the coefficient 2 determined by 

(1 - ,~) m( /~)  + , ~ ( -  m ( / ~ ) )  = p (7) 

In other words, choosing randomly a location on the torus, it is with high 
probability inside of a region of a pure phase--with probability 2 the 
behavior in its close neighborhood is governed by the minus phase. 
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However, we would like to understand also the global behavior--the 
probability distribution of different shapes of the separation line between 
regions of pure phases. One such statement about the canonical ensemble 
is proved in pioneering papers by Minlos and Sinai. (25'26) Their result can 
be stated in the following way. Consider a square covering the volume 2N 2 
and take a strip along its boundary of thickness of the order e-~N. Then, 
with probability asymptotically approaching 1, there exists a unique "large 
contour" separating phases such that it can be confined, shifting it 
appropriately, inside the considered strip. 

It is known that for the Ising ferromagnet in the limit of vanishing 
temperature, the optimal Wulff shape is actually a square. Thus, the 
Minlos-Sinai result means that, for a typical configuration and at very low 
temperatures, the separation line is following closely the zero-temperature 
Wulff shape. The disadvantage, however, is that one is comparing the 
separation line with the zero-temperature shape also for nonvanishing 
temperatures and as a consequence one has to consider a rather broad strip 
whose thickness is proportional to N. 

Our aim is to sharpen this result in such a way that the Wulff shape 
corresponding to the particular considered temperature becomes relevant. 
Let us begin by describing the Wulff construction in our case. It is based 
on the notion of orientation-dependent surface tension introduced in a 
standard way. Namely, considering the set 

V=VN, M={t=(tl, t2)~_2:--N<.tl<.N,-M<.t2<~M}cZ2 (8) 

and fixing a direction n e51 (where N i c  ~2 is the unit circle with the 
center at0), we introduce the boundary condition if", to enforce an 
interface perpendicular to n, by taking 

{ 1  if (t, n) > 0  
~ = 1 if (t, n) <~ 0 (9) 

We introduce also the boundary conditions ff + such that 

0 + = 1 for all teT/2 (10) 

The surface tension with respect to an interface orthogonal to a vector 
n ~ N~ is now defined as the limit 

z#(n) = _ 2irno~ 2imoo 1 Z(V, 3, #") (11) ~d(N, n) log Z( V,/~, ff + ) 

Here d(N, n) is the length of the segment 

{t6 N2: (t, n)=0,  tl~ I - N ,  N]} (12) 
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and 

Z(V,/~, ~ ) =  ~ e x p { - / ? H ( o - i  ~)} (13) 
o- ~ Y2V 

is ~he part i t ion function in V under fixed boundary  condit ions ~. The 
Hamil tonian  H(a  I ~) under  a fixed boundary  condit ion ~ is given by 

~) = -�89 ~, J ~ , ~ , -  ~ J~rs# ~ (14) 
(s,t) (s,t) 

S, tE V, ss~t  s~  V , t ~ 2 \ V  

Once the surface tension v~(n) is defined (known),  we can ignore, for 
the moment ,  all microscopic details and, considering a macroscopic  droplet  
with a boundary  given by a closed self-avoiding rectifiable curve ? in N2, 
we can pose the problem of a minimalizat ion of an overall surface tension 

(15) 

Here ns e N1 is the direction of the normal  with respect to the curve ? at 
the point  s ~ ? and ds is the differential of its length. 

A curve ?e,p will be called the Wulffshape (or the Wulff curve) with 
parameters  /? and p, [p[ < 1, if the area it encloses equals 2, 5 where 2 is 
determined by the condit ion (7), and for all curves ~ e @ enclosing area 
larger than or equal to 2 it yields the minimal overall surface tension, 

>i (16) 

As already mentioned, the solution to this optimalizat ion problem was 
described in geometrical terms already by Wulff. (3) Namely,  assigning to 
every vector n e g l the half-plane 

L .  = {x ~ 1~2: (x, n) ~< t~(n,)} (17) 

we get the Wulff shape, up to a rescaling, as the boundary  of  the 
intersection 6 

r .  (is) 
n ~  t 

5 Actually, we will be interested in curves surrounding the a r e a  ) .N 2. However, it is convenient 
to consider these curves rescaled down by the linear factor N, i.e., placed on a unit 
continuous torus T1. Occassionally we will use also a continuous torus TN defined as 
TN = ~2/NZ2 and consider the inclusion T N c i~ u induced by the inclusion y2 c N2. 

6 It turns out that, for the Ising model at low temperatures and with the values of p 
considered below, the shape of the Wulff curve is close to a square with sides smaller than 
1/2 and thus it can be placed on a torus if" 1 without winding around. 
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For a proof that this construction really solves the optimalization 
problem see, e.g., refs. 4, 5, and 27. 

Now we are prepared to state our main result. Describing configura- 
tions in a standard way in terms of corresponding collections of contours, 
the first part of the statement is that a typical configuration of the canoni- 
cal ensemble contains only one long contour whose length is of the 
order N; all remaining contours are much shorter. Consider further the 
Wulff curve (rescaled in such a way that its interior occupies the volume 
2N 2) and take a strip along this line of thickness of the order N 3/4. The 
claim now is that, in a typical configuration, the long contour can be shif- 
ted in such a way that it is confined inside the strip. Statistical properties 
of configurations in the interior of the long contour and far enough from 
it are close to the properties of the minus phase (as defined by the ther- 
modynamic limit in the grand canonical ensemble with minus boundary 
conditions), while in the exterior and sufficiently far from the contour they 
are close to the plus phase. 

To state our result in a formal way, we recall the notion of contours. 
We use T* = TN--}-(1/2, 1/2) to denote the dual lattice on the torus. For a 
configuration a e ~c~ N we call the bonds of its boundary F(a) all segments of 
unit length connecting sites of dual lattice T* such that if tl and t 2 are 
lattice sites on TN whose distance from the considered segment is 1/2, then 
necessarily at1 :# ate. In other words, a bond belongs to the boundary if it 
separates a pair of nearest neighbor sites occupied by opposite spins. The 
set F(a)  of bonds splits up, after "rounding off the corners" in the standard 
way, 07) into closed self-avoiding polygons to be called contours of the 
configuration a. The geometrical closeness of two curves F1 and F2 is 
measured by their Hausdorff distance, 

pH(F1, / "2 )  = max{ sup dist(x, F 2 )  , sup dist(x,/"1)} (19) 
x e F l  x ~ F  2 

T h e o r e m .  For any Po such that Po > 1/2 there exists/~o(Po) so that 
if /~>~Bo(Po), po<p<m(~), and pN=R~/ITNI ~ p  as N-~ oo, then the 
probabilities of the sets AN c ON, RN of configurations defined below tend to 
one, 

lim PN.#.Ru(AN)= 1 (20) 
N ~ o o  

The set A N consists of all configurations a that, for some constants 
K= K(fl, p) and ~: = fc(fl), satisfy the following properties: 

1. The family of contours of the configuration a contains exactly one 
"large" contour Fo=Fo(a); for all remaining contours, their 
diameters do not exceed K log N. 
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2. The area [Int(F0)t of the interior of the contour F0 satisfies the 
bound 

[ IInt(Fo)l - ).NN2[ <~ KN6/S(log N) ~ (21) 

with )*N given by A N = [m(fl)--pu]/2m(fl)  [see (7)]. 

3. There exists a point x = x(a) ~ ~"N SO that the Hausdorff distance 
of the shift Fo + x of the contour Fo from the rescaled Wulff curve 
NT~o,pu satisfies the bound 

pH(I'o(Cr) + X(a), NYpo,pu) ~ KN3/4(log N) 3/2 (22) 

Let us use {F0} to denote the set of configurations o-e A~,, containing 
the contour F0 as the single large contour and ( .  I {F0})/z,~,Ru to denote 
the conditional mean value in the canonical ensemble under the condition 
{Fo}. Then, choosing a constant a > 0, there exist constants K =  K(fl, p, a), 

= e(fi, p), and a sequence eN(fl) ~ 0 as N ~ ov such that for all N, 
all finite A c TN satisfying the bound IA[ ~< a, and all functions f(aA) 
supported by A such that If(aA)l ~< 1, one has 

[ ( f ]  {Fo})N,/~,Ru--(f)~,-I<~Kexp{--c~dist(Fo, A)}+eN (23) 

whenever the set A lies in the interior of the contour Fo, and 

I ( f t  {Fo})N,~,RN--(f)~,+l<<-Kexp{--c~dist(Fo, A)}+eN (24) 

whenever the set A lies in the exterior of the contour F 0. 

Remarks. 1. Employing periodic boundary conditions simplifies the 
proofs since it allows one to ignore the interaction of the large contour 
with the boundary of our volume, which could influence its form. However, 
it seems that some of the methods of the present work could be extended 
to the case with boundaries. 

The formulations of the results as well as their proofs can be almost 
automatically extended to the case of more general two-dimensional 
ferromagnetic models. It seems also that the method of the paper can be 
extended to  more general situations of phase transitions of first order 
covered by the Pirogov-Sinai theory. 

Very recently Pfister (28) explicitly also studied, using some ideas from 
ref. 16, the problem of the Wulff shape for the case of plus boundary condi- 
tions. He simplified our constructions with the help of duality. On the other 
hand, however, his method cannot be extended to a general ferromagnetic 
case. 
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The boundaries play an even more significant role when discussing the 
shape of a droplet partially wetting the wall. This problem is studied in 
ref. 29. 

2. There are several serious difficulties facing attempts to generalize 
our work to the three-dimensional case: 

(a) First of all, one needs a very accurate description of the partition 
function yielding the surface tension. This is comparatively easy in the two- 
dimensional case, using the fact that contours are one-dimensional objects 
that can be split up into independent pieces. In the three-dimensional case, 
the same approach leads to difficult problems of random surfaces. The 
exception is the case of an interface oriented along the coordinate axes of 
the lattice. In this case the study of the surface tension can be based on the 
methods used to prove the existence of translation-noninvariant Gibbs 
states for the three-dimensional Ising model (see ref. 30 and in particular 
ref. 31, where the surface tension is explicitly studied). 

(b) The problem of the asymptotic shape of a large contour seems to 
be linked with the problem of description of translation-noninvariant 
Gibbs states (there are no such states in the two-dimensional case; see 
refs. 32-35). In particular, whenever a Gibbs state corresponding to an 
interface of certain type exists, the Wulff shape should reveal flat facets of 
the same type with the probability distribution of a microscopic interface 
along the facet governed by this Gibbs state (in the two-dimensional case 
there are no straight segments on the Wulff curve). However, the problem 
of describing all translation-noninvariant Gibbs states in the three- 
dimensional Ising model is not solved and seems to be rather difficult 
(see, e.g., the discussion in ref. 36). 

(c) Another problem stems from the very formulation of the main 
statement. It has to be changed when passing to the three-dimensional case. 
An important role in our proof is played by the stability of the solution of 
the Wulff variational problem: if ~W~(?)- ~ ( 7 ~ . p ) ~  0 and 7 encloses an 
area not smaller than 2, then also p,~(?+ t(7), 7a, p ) 4 0  for a suitably 
chosen shift t(?). However, as formulated here, it certainly fails in the three- 
dimensional case. The fact that the difference ~W~(V)- ~/~(V~.p) is small no 
longer implies that the Hausdorff distance of ~ + t and ?~,p is small for 
some shift t e0~ 3. A cure might be the introduction, instead of PH, of 
another norm in which a solution of the Wulff problem would be stable. A 
natural candidate would be the volume of the symmetric difference of the 
regions inside the surfaces 7 + t  and ye.p, i.e., the f ia t  norm used in 
geometric measure theory in similar situatons. Even when keeping the 
Hausdorff distance, it seems that "large contours with long hairs sticking 
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out of the surface" are inprobable and the main theorem has to be still true. 
A proof of this fact would require additional constructions. 

3. To have full control of the properties of the Gibbs states used in 
the proofs, we have to suppose that the inverse temperature fl is large 
enough. However, it is natural to expect that the results are true for all 

4. Combining, for the two-dimensional Ising model, an expression 
for the surface tension via duality in terms of the two-site correlations with 
exact Onsager techniques, Abraham and Reed (37~ (see also ref. 38) were 
able to find an explicit function for the orientation-dependent surface ten- 
sion v(n). Unfortunately, such an explicit expression is not helpful for our 
aims, since what we need is a good control of the asymptotic behavior of 
the corresponding partition function and the coincidence of several natural 
versions of the definition of surface tension. 

5. As already mentioned, the full details of the proof of the Theorem 
are presented in ref. 16. It contains also an alternative formulation of the 
statement not employing contours. Notice also that the Wutff construction 
was recently presented for other (simpler) models: DeConinck eta/. (39) con- 
sider a solid-on-solid model, and Alexander eta/. (4~ study a percolation 
model. 

3. IDEA OF PROOF 

The first step of the proof consists of a passage from a canonical 
ensemble, with a fixed total spin ~teruat=RU,  to a grand canonical 
ensemble. Namely, by comparing these ensembles, we see that, for any set 
A Cg2N, RN of configurations, one can express the canonical ensemble 
probability 

PN /3 RN(A) Pu,/3,o(A) 
, , - -  p N , / 3 , 0 ( Q N ,  Rlv ) 

(25) 

in terms of probabilities in the grand canonical ensemble with vanishing 
external fields. 

The proof is then based on the following crucial bounds. Under the 
conditions of the Theorem, for some K =  K(fl, p) and for all N sufficiently 
large, we have the lower bound 

PN,~,O(~-2N, Ru) ~ exp{ -flN~U(V/3,pu) - KNZ/5(log N) e } (26) 
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for some 7 >0 ,  and, for the complement of the set AN defined in the 
Theorem, the upper bound 

PN,~,o(AN) <<, exp{ --flN~CF(y~,pu ) - KNZ/5(log N) 6 } (27) 

for every 6 > 0. The claim (20) then immediate follows. 
The derivation of bounds (26) and (27) begins by picking up large 

contours. Namely, fixing first a sequence o N such that CON/lOg N ~ ~ and 
CON/N ~ O, we consider, among all contours of a configuration, those with 
the diameter larger then COs. Simplifying now slightly, we approximate 
large contours by their skeletons--polygons,  constructed in a algorithmic 
way, for which the distance of neighboring points approximately equals 
CON" This procedure is illustrated in Fig. 1. 

Further, we perform a "partial integration" by summing up the 
probabilities of all configurations having a fixed family of skeletons. First, 
we evaluate the contribution of an isolated ith fragment of the contour 
joining two neighboring vertices of a skeleton. This contribution can be 
measured by the ratio of the  partition functions entering in the argument 
of the logarithm in (11) with n = ni, where ni is the unit vector orthogonal 
to the segment 3i joining the considered neighboring" vertices of the 
skeleton. Since the length IA;] of this segment goes to ~ ,  the considered 
contribution asymptotically equals exp ( - flNz~(n~) A i}- 

I 

Fig. 1. The vertices of a skeleton are chosen as certain (not all) intersections of the con- 
sidered contour with a grid of appropriate size. The employed algorithm determines which 
intersection is to be kept and assures that the distance between neighboring intersections 
diverges with o3 u ~ GO. For the construction to be unique, the starting point x and the orien- 
tation of the contour are to be chosen. Notice that the resulting polygon is not necessarily 
self-avoiding. 
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To be able to establish the considered resummations for two fragments 
separately, one has to suppose that the corresponding portions of the con- 
tours do not intervene. This can be done for the fragments that are well 
separated, once we prove that the surface tension re(n) is accurately 
approximated even when the volume V on the right-hand side of (11) is 
restricted to be a fixed, comparatively narrow, "cigar-shape" neighborhood 
of the fragment. Proof of this approximation amounts to a study of the 
statistical properties of the microscopic interface given by the contour 
joining two vertices of a skeleton. In particular, one needs estimates of 
probabilities of large deviations of the interface of general orientation from 
its mean position. 

If the collection of all cigar-shape neighborhoods of the edges of a 
family of skeletons were mutually disjoint, the total contribution from all 
skeletons would equal the product of contributions corresponding to 
separated segments and would thus yield 

exp {-flN~ r~(ni) [Ai[ } (28) 

The existence of sides of a skeleton that either cross or "almost touch" 
slightly spoils this picture. In this case one has to introduce certain 
"interactions" between corresponding segments and consider a "perturbed 
sum" in the exponent (28). 

After a normalization in accordance with the mapping TN ~ Tt, the 
sum in the exponent (28) can be interpreted as a sum approximating 
integrals of the form (15), and thus an asymptotic contribution of a 
collection F1,..., F k of large contours is finally equal to 

exp {-flN~ ~gB(N-IFk)} (29) 

where N-1Fk is the image of the curve Fk in the torus T1- Actually, the 
presence of the above perturbations leads to the introduction of a 
perturbed Wulff functional ,~erturb that equals the original one only when 
the curves above arc self-avoiding (and not forming any "almost closed 
loops") and well separated. 

To get the lower bound, we apply the above construction to the 
particular case when the points of the skeleton are placed along a suitably 
rescaled Wulff shape. Contrary to the upper bound, where complicated 
self-intersecting skeletons may appear, the skeleton considered here is 
rather "smooth" and it suffices to consider only an unperturbed Wulff 
functional. 
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It is clear from the lower bound (26) and the formula (25) that, for 
typical configurations, the difference 

Z ~/lf perturb ( AT-- 1/'~ ,, ~ ~ ,  J k J -  ~r (30) 
k 

has to be small. Showing that curves (family of curves) for which ~/r rr /~ 

actually differs from ~/r have necessarily a significant additional length, one 
proves that the optimalization problem for ,./,r yields again the rr 

original Wulff shape 7~,p. From the resulting generalization of the Wulff 
variational principle it follows that if the total area inside the curves F~ 
equals 2N 2, then the difference (30) is nonnegative. Moreover, one can 
establish the stability of the Wulff construction by generalizing the 
Bonnessen inequality (a bound on the difference of the diameters of 
circumscribed and inscribed circles to a curve of a given perimeter). The 
resulting bound--the possibility to consider a perturbed functional applied 
to a collection of curves has to be included--implies that if the difference 
(30) is small, then there is exactly one large contour among F~. It follows 
closely the shape of the Wulff curve, and the remaining contours have small 
total length (see statements 1 and 3 of the Theorem). 

The statement that, for typical configurations, the total area inside the 
curves approximately equals 2N 2 needs special consideration. It is based on 
the fact that, according to the law of large numbers and the definition of 
2 [see (7)], only in the case that this area approximately equals 2N 2 does 
the value R N lie near the mean value of the sum of spins, 

s N ( o ) =  Y~ ak (31) 
k~TN 

On the other hand, if the area significantly differs, the value R N lies in the 
region of large deviations of the sum SN, and probabilities of such con- 
figurations are very small. For every fixed collection of large contours, the 
proof actually boils down to an evaluation of the total spin in an arbitrary 
finite volume with fixed boundary conditions (and in the ensemble where 
only short contours are allowed). What one needs are accurate upper 
bounds on the probabilities of large deviations of the total spin with 
respect to the mean value given by the spontaneous magnetization. These 
can be obtained using the analytical properties of the corresponding 
partition functions obtained with the help of low-temperature cluster 
expansions. 
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